Proof of Two Conjectures of Brenti and Simion on Kazhdan-Lusztig Polynomials

نویسنده

  • FABRIZIO CASELLI
چکیده

We find an explicit formula for the Kazhdan-Lusztig polynomials Pui,a ,vi of the symmetric group S(n) where, for a, i, n ∈ N such that 1 ≤ a ≤ i ≤ n, we denote by ui,a = sasa+1 · · · si−1 and by vi the element ofS(n) obtained by inserting n in position i in any permutation ofS(n −1) allowed to rise only in the first and in the last place. Our result implies, in particular, the validity of two conjectures of Brenti and Simion [4, Conjectures 4.2 and 4.3], and includes as a special case a result of Shapiro, Shapiro and Vainshtein [13, Theorem 1]. All the proofs are purely combinatorial and make no use of the geometry of the corresponding Schubert varieties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kazhdan-lusztig and R-polynomials, Young’s Lattice, and Dyck Partitions

We give explicit combinatorial product formulas for the maximal parabolic Kazhdan-Lusztig and R-polynomials of the symmetric group. These formulas imply that these polynomials are combinatorial invariants, and that the KazhdanLusztig ones are nonnegative. The combinatorial formulas are most naturally stated in terms of Young’s lattice, and the one for the Kazhdan-Lusztig polynomials depends on ...

متن کامل

Special matchings and Kazhdan-Lusztig polynomials

In 1979 Kazhdan and Lusztig defined, for every Coxeter group W , a family of polynomials, indexed by pairs of elements ofW , which have become known as the Kazhdan-Lusztig polynomials of W , and which have proven to be of importance in several areas of mathematics. In this paper we show that the combinatorial concept of a special matching plays a fundamental role in the computation of these pol...

متن کامل

Parabolic Kazhdan-lusztig Polynomials for Hermitian Symmetric Pairs

We study the parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs. In particular, we show that these polynomials are always either zero or a monic power of q, and that they are combinatorial invariants.

متن کامل

Combinatorial invariance of Kazhdan-Lusztig polynomials on intervals starting from the identity

We show that for Bruhat intervals starting from the identity in Coxeter groups the conjecture of Lusztig and Dyer holds, that is, the R-polynomials and the Kazhdan-Lusztig polynomials defined on [e, u] only depend on the isomorphism type of [e, u]. To achieve this we use the purely poset-theoretic notion of special matching. Our approach is essentially a synthesis of the explicit formula for sp...

متن کامل

Peak algebras , paths in the Bruhat graph and Kazhdan - Lusztig polynomials ∗

We obtain a nonrecursive combinatorial formula for the Kazhdan-Lusztig polynomials which holds in complete generality and which is simpler and more explicit than any existing one, and which cannot be linearly simplified. Our proof uses a new basis of the peak subalgebra of the algebra of quasisymmetric functions. Résumé. On montre une formule combinatoire pour les polynômes de Kazhdan-Lusztig q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004